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Fluorescent photons emitted by a two-state atom in a laser beam are correlated. We have obtained the probability density for the
emission of the nth photon after a random initial time t = 0. It is shown that the correlations between the photons lead to a
deviation from the poissonian value for this function (the probability density for independent events), although the deviation is
not as significant as one may expect.

1. Introduction

When a two-state atom, with energy level separation �ωo,
is immersed in a laser beam with an angular frequency ωL,
then photons are exchanged between the atom and the field
in stimulated absorption and emission, provided that ωL is
near ωo. We shall consider the case of resonance, so ωo = ωL.
In addition, photons are emitted in spontaneous transitions
from the excited state to the ground state, and these photons
are emitted in all direction as electric dipole radiation. The
emission of these fluorescent photons can be considered as
a random event process on the time axis, and we assume
that the duration of each event is negligible (dots on the time
axis). This interpretation can be justified with the theory of
photon detection from an electromagnetic field [1, 2]. Let A
be the Einstein coefficient for spontaneous transitions from
the excited state to the ground state [3] and let ne be the
population of the excited state. Then, the number of emitted
photons per second is equal to

I = Ane, (1)

and this is the intensity of the random process. We shall
assume that the atom is in the steady state, so that I is
independent of time. The temporal statistics of photon
emissions can be represented by the probability densities
wn(t), with n = 1, 2,. . .. Let τn be the time at which the

nth photon is emitted, after an initial time t = 0. Since
photons are emitted randomly, τn is a random variable, and
its probability density is wn(t):

wn(t)dt = probability that τn lies in [t, t + dt]. (2)

We shall evaluate wn(t) for the emission of fluorescent
photons.

If photons were emitted independently of each other,
then the emission process would be a Poisson process, and
the probability for the emission of n photons in [0, t] would
be

Pn(t) = (It)n

n!
e−It . (3)

The probability for the emission of the nth photon in [t, t +
dt] is Idt. If this emission would be independent of previous
emissions, then

wn(t)dt = Pn−1(t)Idt, (4)

so that

wn(t) = I
(It)n−1

(n− 1)!
e−It . (5)
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2. Photon Correlations in
Resonance Fluorescence

Correlations between random events are expressed through
the intensity correlation functions [4, 5]:

Ik(t1, t2, . . . , tk)dt1dt2 · · ·dtk

= probability for a photon emission in [t1, t1 + dt1],

and . . . and a photon emission in [tk, tk + dtk],

irrespective of emissions at other times, and with

t1 < t2 < · · · < tk.
(6)

For resonance fluorescence, these correlation functions take
the form [6, 7]

Ik(t1, . . . , tk) = Ak f (tk − tk−1) · · · f (t2 − t1)ne,

k = 2, 3, . . . ,
(7)

involving the function f (t). This function equals the popu-
lation of the excited state at time t, under the condition that
the atom is in the ground state at t = 0. Therefore,

f (0) = 0. (8)

From (7), we then see that an intensity correlation function
vanishes when two consecutive time arguments are the
same. Consequently, immediately after the emission of a
photon, there can be no emission of the next photon. This
phenomenon is called antibunching and has been observed
experimentally [8–10]. Physically, this can be understood
from the fact that after the emission of a photon the atom
is in the ground state, whereas a photon can only be emitted
when the atom is in the excited state. It takes a finite time for
the atom to make the transition from the ground state to the
excited state, and, therefore, the probability for an emission
immediately after a previous one is zero. We also have

f (∞) = ne, (9)

since ne is the population of the excited state in the steady
state.

The function f (t) can be evaluated by solving the
equation of motion for the system. The free parameter is the
the Rabi frequency Ω, which is assumed to be positive. This
parameter depends on the atomic transition dipole moment,
and Ω2 is proportional to the power of the laser. We find that
[11]

f (t) = ne

{
1− e−(3/4)t̂

[
3

4ρ
sinh

(
ρt̂
)

+ cosh
(
ρt̂
)]}

, (10)

where we have set t̂ = At for the time in units of the life time
1/A of the excited state. The parameter ρ is defined as

ρ =
√

1
16
− Ω̂2, (11)
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Figure 1: The graph shows the function f (t) for Ω̂ = 0.2 (curve a),
Ω̂ = 2 (curve b), and Ω̂ = 8 (curve c). For small Ω̂, the function is
exponential, and for large Ω̂ the function is oscillatory.

with Ω̂ = Ω/A being the Rabi frequency in units of A.
For Ω̂ < 1/4, the function f (t) reaches its steady state ne
exponentially, but for Ω̂ > 1/4, the hyperbolic functions
become trigonometric functions, and oscillations appear.
Figure 1 illustrates the behavior of f (t). The steady state is
found to be

ne = Ω̂2

1 + 2Ω̂2
. (12)

3. Laplace Transform of
the Probability Densities

The intensity correlation functions Ik(t1, . . . , tk) contain all
information about the random process, and the probability
densities can be found from these functions [12]. It appears
convenient to adopt a Laplace transform of wn(t):

w̃n(s) =
∫∞

0
e−stwn(t)dt. (13)

We then obtain that [13]

w̃n(s | 0) = I

s
[

1 + A f̃ (s)
]
⎛
⎝ A f̃ (s)

1 + A f̃ (s)

⎞
⎠
n−1

, (14)

in terms of the Laplace transform f̃ (s) of f (t).
From (10), we find that

f̃ (s) = Ω2

2s
1

(A + s)((1/2)A + s) + Ω2
, (15)
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and this yields

w̃n(s | 0) = I
(
(1/2)AΩ2)n−1

× (s + A)(s + (1/2)A) + Ω2{
(s + (1/2)A)

[
(s + (1/2)A)2 − γ2A2

]}n ,

(16)

where we have set

γ =
√

1
4
− Ω̂2. (17)

4. Probability Densities

In order to evaluate the Laplace inverse of (16), we first shift
the parameter s with the attenuation theorem:

wn(t) = I
(

1
2
AΩ2

) n−1

e−(1/2)AtL−1

⎧⎪⎨
⎪⎩
s(s + (1/2)A) + Ω2

sn
[
s2 − (Aγ)2

]n
⎫⎪⎬
⎪⎭.

(18)

The inverse on the right-hand side can be computed with the
Bromwich integral [14]. We find that

wn(t) = I
(

1
8
Ω̂2
) n−1 1

γ3n−1
e−(1/2)t̂

×
n−1∑
k=0

n−1−k∑
r=0

(
γt̂
)n−1−k−r

(n− 1− k − r)!

×
{

1
2

[
(−1)kvr

(
γ
)
eγt̂ + vr

(−γ)e−γt̂]

×An−1,k − vr(0)Bn−1,k

}
.

(19)

The functions vr(x) are defined as

v0(x) = x
(
x +

1
2

)
+ Ω̂2,

v1(x) = γ
(

2x +
1
2

)
,

v2(x) = γ2,

vr(x) = 0, r > 2,

(20)

and the coefficients An,k and Bn,k are

An,k =
k∑

m=0

(
n + m
n

)(
n + k −m

n

)
2n−m,

Bn,k = 22n
k∑

m=0

(
n + m
n

)(
n + k −m

n

)
(−1)n−m,

(21)

for n = 0, 1, . . ., and k = 0, 1, . . .. A variety of properties of
these coefficients have been derived elsewhere [15]. For small
n and k, these coefficients can be computed from (21), and

Table 1: Table of An,k .

n
k

0 1 2 3

0 1 3/2 7/4 15/8

1 2 6 23/2 18

2 4 18 48 99

3 8 48 164 420

Table 2: Table of Bn,k .

n
k

0 1 2 3

0 1 0 1 0

1 −4 0 −8 0

2 16 0 48 0

3 −64 0 −256 0

the results are tabulated in Tables 1 and 2. For t = 0, only the
term with r = n− 1− k survives, and with various sumrules
for the coefficients An,k and Bn,k, we derive the initial values

wn(0) = Iδn,1. (22)

On general grounds, this relation holds for any probability
density of a random event process.

5. Deviation from Poisson Statistics

The expression on the right-hand side of (19) for wn(t) is
the main result of this paper. From this rather formidable
formula, it is not readily clear what the significance of
this result is. In order to discover the main features of the
probability densities, we work out the cases for n = 1 and
n = 2. We find that

w1(t) = I
1
γ2

e−(1/2)t̂
[
−Ω̂2 +

1
2
γ sinh

(
γt̂
)

+
1
4

cosh
(
γt̂
)]

,

w2(t) = I
Ω̂2

8γ4
e−(1/2)t̂

[
2 + 4Ω̂2 t̂ +

(
4γ − 3

2γ
+ γt̂

)
sinh

(
γt̂
)

+
(

1
2
t̂ − 2

)
cosh

(
γt̂
)]

.

(23)

Photons are emitted randomly, but the photons are corre-
lated, as can be seen from Figure 1. For uncorrelated pho-
tons, the function f (t) would be a constant: f (t) = f (∞) =
ne, and wn(t) would be the Poisson distribution given by (5)
(with I = Ane). The solid curves in Figures 2, 3, and 4 show
w1(t) for Ω̂ = 0.2, 2, and 8, respectively, and the dashed
curves are w1(t) for a Poisson distribution with the same
intensity. These parameters are the same as for the various
functions f (t) in Figure 1. We see from Figure 2 that for
small laser power the probability density for the emitted pho-
tons is almost indistinguishable from the Poisson distribu-
tion. For larger Ω̂, oscillations set in, and w1(t) deviates more
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Figure 2: The graph shows w1(t)/A for Ω̂ = 0.2.
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Figure 3: The graph shows w1(t)/A for Ω̂ = 2.
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Figure 4: The graph shows w1(t)/A for Ω̂ = 8.



ISRN Optics 5

0 50 150100
0

0.006

0.012

0.018

t̂

w
2
(t

)/
A

Figure 5: The graph shows w2(t)/A for Ω̂ = 0.2.
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Figure 6: The graph shows w2(t)/A for Ω̂ = 2.

noticeably from the Poisson curve, as illustrated in Figure 3.
For even larger Ω̂, as in Figure 4, the oscillations get faster,
but the amplitude of the oscillations diminishes, and the
probability density is again nearly poissonian. The proba-
bility density in Figure 4 is determined by curve c for f (t)
in Figure 1, and this function deviates very strongly from its
Poisson value f (∞). We notice that the strong oscillations
in f (t) result only in small ripples on the function w1(t) in
Figure 4, which appears quite remarkable. Figures 5–7 show
w2(t) for the same values of Ω̂ as in Figures 2–4. It appears
that w2(t) deviates more from Poisson statistics, in particular
for moderate laser power, as in Figure 6.

6. Conclusions

A two-state atom in a laser beam emits fluorescent photons.
We have obtained the probability density wn(t) for the
emission of the nth photon after a random initial time t = 0.
It is assumed that the laser frequency is on resonance with
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Figure 7: The graph shows w2(t)/A for Ω̂ = 8.

the atomic transition. The result is given by (19), and it only
has the dimensionless Rabi frequency Ω̂ as free parameter.
Of particular interest is the deviation from the probability
density for independent events (Poisson process), since
this reflects the correlations between emitted photons.
The results are illustrated in Figures 2–7, and we observe
that the functions wn(t) only deviate moderately from the
corresponding functions for independent photon emissions.
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